ANALYSIS OF VIBRATIONAL SPECTRA OF PHENYLPHOSPHINE, DIPHENYLPHOSPHINE AND THEIR CHLORO DERIVATIVES. OVERLAY TECHNIQUE CALCULATION OF THEIR FORCE FIELD IN THE "REDUCED MODEL" APPROXIMATION.

Soňa Bergrová-Přádná

J. Heyrovský Institute of Physical Chemistry and Electrochemistry, Czechoslovak Academy of Sciences, 160 00 Prague

Received July 17th, 1980

A normal coordinate analysis using the "reduced model" of benzene ring was carried out with $(C_6H_5)_nPX_{3-n}$ (n = 1, 2; X = H, Cl) compounds. 46 wavenumbers of vibrational transitions of the phenyl- and phosphine group were determined by means of the overlay technique. The transferability of force constants used in this calculation is discussed and an improved assignment of vibrations in the phenyl and phosphine group, based on PED calculations is presented.

In an earlier paper¹ we were concerned with the measurement and detailed interpretation of infrared and Raman spectra of diphenylphosphine $(C_6H_5)_2PH$, phenyldichlorophosphine $C_6H_5PCl_2$ and diphenylchlorophosphine $(C_6H_5)_2PCl$, using chlorobenzene as the model compound. Shortly after that article was submitted, the results of spectral analysis for a similar set of compounds were published by Hassler and Höfler². The assignment offered by these authors² is based on experimental C_6H_5/C_6D_5 isotopic shifts, as well as on calculations of the characteristicity of some low frequency fundamental vibrations ($600-100 \text{ cm}^{-1}$). In this paper we attempt to reproduce the wave numbers of selected fundamental vibrations by a set of valence force constants. The results are compared with the assignments of Hassler and Höfler².

Information about structure of the phenylphosphine derivatives studied in this paper is very limited. Phenyldichlorophosphine³ is the only compound the structure of which was so far elucidated (by electron diffraction). The structure of all other compounds was described by various structural models based on the C_s point symmetry group, derived from Raman line depolarisation measurements⁴, band splitting in the liquid⁵ and solid⁶ state and the character of the envelopes of gas phase spectra bands⁵. A normal coordinate analysis in the harmonic approximation of the force field was carried out for chloro derivatives of benzene⁷, phosphine methyl derivatives⁸ and dichlorophosphine methyl derivatives⁹; but no force constants were given by Hassler and Höfler².

The assumption of transferability of force constants within the benzene chloro derivatives was already verified⁷ for the case that it is possible to define the local environment of the corresponding internal coordinate¹⁰. Therefore, in present paper the calculation was limited to frequencies of several X-sensitive vibrations of the monosubstituted benzene ring¹¹ and to vibrations of the phosphine substituent. It was found advantageous to use for this calculation the "reduced model" of the phenyl group, introduced by Becher and Höfler¹². The geometric parameters required for estimation of the **G** matrix elements were assumed to be the same as those for chlorobenzene⁷ and the methyl derivatives of phosphine^{8,13} and diphosphine⁹. The mutual orientation of both benzene rings in diphenylphosphine and its chloro derivatives, which is not specified in their paper², was taken from work of Steger and Stoperka⁶.

The wavenumbers of vibrational transitions were determined by solving the inverse secular problem¹¹ using the overlay technique. The iteration procedures were terminated after a 2-5% mean deviation between the experimental and theoretical wavenumbers had been reached.

EXPERIMENTAL

The measurement of infrared and Raman spectra and the conditions for sample storage of the rather unstable compounds were described earlier¹. An IBM-7040 computer was used for the calculations, executed in Fortran IV language.

RESULTS

The details of spectral analysis of the compounds under discussion and the force constants calculation were described previously¹. The geometry and intermal coordinates employed in this paper are shown in Fig. 1; Fig. 1c presents the configuration of a molecule, in which the angle between the plane of symmetry σ_{xz} and the plane YCY is identical with the projection of the angle $\delta/2$ into the plane σ_{yz} . Numerical values of the atomic masses were taken from reference¹⁴ and the Y atom mass was chosen as twice the mass of atom C. The geometrical parameters applied in the calculations are given in Table I. The symmetry coordinates and their correlation with fundamental vibrations are given in Table II.

The preliminary calculation based on force constants presented in the literature^{7-9,13} proved that only 11 types of interaction constants were of significance; all the remaining non-diagonal constants were neglected since their absolute values were less than their three times deviations. The force constants and their deviations are summarized in Table III, the calculated wavenumbers, their relative deviations from experimental values and the potential energy distribution data (further only PED) are given in Table IV.

Vibrational Spectra of Phenylphosphine

DISCUSSION

The vibrational spectra of the phenyl derivatives contain bands, the wave numbers of which are not sensitive to mass and chemical character of the substituents, as well as bands of so called "X-sensitive vibrations" with wavenumbers strongly depending on the substituent properties. Assignment of the mass insensitive vibrations was described in the previous paper¹ and agrees with the results in reference⁴⁻⁶.

On the other hand, the assignment of X-sensitive vibrations and of vibrations of the phosphorus containing substituent does not agree well with the published results, especially in a low-frequency region. For example, the lowest band of the

FIG. 1

The orientation of coordinate system and the selection of valence force coordinates: a) monosubstituted benzene b) phenylphosphine skelet c) diphenylphosphine skelet

PH₂ group was assigned to the wagging mode $v_5(A')$ in analogy with anilin¹¹ $C_6H_5NH_2$. The band at 605 cm⁻¹ in phenylphosphine (and the band of similar nature at 505 cm⁻¹ in diphenylphosphine) were in previous papers assigned to the combination frequencies^{4,5}. Furthermore, the strong infrared band in the diphenylphosphine spectrum was assigned to the twisting vibration $\delta_{as,CPH} - v_6(A'')$, the polarized Raman line at 256 cm⁻¹ to the scissoring vibration $\delta_{PC_2} - v_4(A')$ in analogy with trimethylphosphine¹. The band at 170 cm⁻¹, which had been formerly assigned to this scissoring vibration² was re-assigned to the vibration $v_{17b}(B_1) - y$.

The twisting vibration is the only deformation vibration of the PH₂ group in the $C_6H_5PH_2$ molecule which changes its wavenumber according to orientation of this group against the benzene ring plane; a change of the angle between the axis of the HPH angle and this plane from 0 to 90° leads to a wavenumber decrease from 821 to 795 cm⁻¹. The insensitivity of other vibrations can be explained by almost total independence of **G** and **F** matrix structures on the conformation change, resulting from a relatively weak interaction between PH₂ and C₆H₅ groups.

The attempts to reproduce the low frequency vibrations of phenyldichloro- and diphenylchlorophosphine by the calculation were unsuccesful. Nevertheless, the corresponding vibrations are mutually strongly coupled and the harmonic approximation used is therefore not an appropriate description of the collective motion. This conclusion is supported by the estimate value of the anharmonicity constant¹ (determined for phenyldichlorophosphine from the wavenumber of the second harmonic of wagging vibration $v_5(A')$), which is by one order of magnitude larger than the anharmonicity constant value for phenyl group in-plane vibrations²³. It was pos-

Model	geometrical parameter ^m							
	rcc	R _{CX,CP}	s _{px}	αγсγ	$\beta_{\rm YC} \begin{pmatrix} {\rm X} \\ {\rm P} \end{pmatrix}$	$\binom{\delta}{\gamma}_{CPX}$	^y xpx .	δ _{CPC}
Y ₂ C-Cl	139·7ª	170 ^b		120 ^c	120 ^c			
Y ₂ C-PH ₂	139.7	183.3	141·4 ^e	120	120	118 ^f	93°12′°	
Y ₂ C-PCl ₂	139.7	183·3 ⁴	$207 \cdot 2^{h}$	120	120	120°54′ ⁱ	100°24′ ^j	
$(Y_2C)_2.PH$	139.7	183.3	141·9 ¹	120	120	118		103°18'k
$(Y_2C)_2.PCl$	139.7	183.3	207.2	120	120	120°54'		103°18′

 TABLE I

 Structural parameters used for OVFF calculations (see Fig. 1)

^a ref.¹⁵, ^b ref.¹⁶, ^c ref.⁷, ^d ref.³, ^e ref.¹⁷, ^f estimate, ^g ref.¹⁸, ^h ref.³, ⁱ ref.³, ^j ref.³, ^k ref.¹⁹, ⁱ ref.²⁰; ^m bond distances given in pm, bond angles in degrees.

Vibrational Spectra of Phenylphosphine

TABLE II

Symmetry coordinates for Y	$C-X$ and $(Y_2C)_p PX_{3-p}$	(n = 1, 2; X =	= H,Cl)
----------------------------	-------------------------------	----------------	---------

$ \begin{array}{c c} \mbox{model } Y_2C-X \\ \begin{array}{c} A_1 & S_1 = 1/\sqrt{2} (\Delta r + \Delta r') & 20a, X & \nu_{CC,s} \\ S_2 = 1/\sqrt{6} (2\Delta \alpha - \Delta \beta - \Delta \beta') & 6a, X & \delta_{CCC} \\ S_3 = \Delta R & 1, X & \nu_{CP} \\ S_4 = 1/\sqrt{3} (\Delta x + \Delta \beta + \Delta \beta') & redund. \\ \end{array} \\ \begin{array}{c} B_2 & S_5 = 1/\sqrt{2} (\Delta r - \Delta r') & 14 & \nu_{CC,ss} \\ S_6 = 1/\sqrt{2} (\Delta \beta - \Delta \beta') & 18b, X & \delta_{CCP} \\ \end{array} \\ \begin{array}{c} M' & S_1 = 1/\sqrt{2} (\Delta r + \Delta r') & 20a, X & \nu_{CC} \\ S_2 = 1/\sqrt{6} (2\Delta \alpha - \Delta \beta - \Delta \beta') & 6a, X & \delta_{CCC} \\ S_3 = \Delta R & 1, X & \nu_{CP} \\ S_4 = 1/\sqrt{2} (\Delta r + \Delta s') & 2 & \nu_{PX,s} \\ S_5 = \Delta \gamma & 4 & \delta_{PX,s}, sciss. \\ S_6 = 1/\sqrt{2} (\Delta r - \Delta r') & 14 & \nu_{CC} as \\ S_7 = 1/\sqrt{2} (\Delta \beta - \Delta \beta') & 18b, X & \delta_{CCP} \\ S_8 = 1/\sqrt{2} (\Delta r - \Delta r') & 14 & \nu_{CC} as \\ S_9 = 1/\sqrt{3} (\Delta \alpha + \Delta \beta + \Delta \beta') & 5 & \delta_{CPX}, wagg. \\ S_9 = 1/\sqrt{3} (\Delta \alpha + \Delta \beta + \Delta \beta') & redund. \\ \end{array} \\ \begin{array}{c} A' & S_{10} = 1/\sqrt{2} (\Delta r - \Delta s') & 3 & \nu_{PX,as} \\ S_{11} = 1/\sqrt{2} (\Delta A_1 + \Delta R_2) & 1,s, X & \nu_{CP,s} \\ S_2 = 1/2(\Delta r_1 + \Delta r_1' + \Delta r_2 - \Delta r_2') & 14,s & \nu_{CC,as} \\ S_4 = \Delta s & 1 & \nu_{PX} \\ S_5 = 1/2\sqrt{3} (2\Delta \alpha_1 - \Delta \beta_1 - \Delta \beta'_1 + \delta_1 - \delta_1' + \delta_1 - \delta_1' + \delta_1 - \delta_1' + \delta_2 - \delta_2') \end{array} $	Symmetry	Coordinate	Assignment ^a	Description
$\begin{array}{ccccccc} A_1 & S_1 &= 1/\sqrt{2} \left(\Delta r + \Delta r' \right) & 20a, X & \nu_{\rm CC,s} \\ & S_2 &= 1/\sqrt{6} \left(2\Delta \alpha - \Delta \beta - \Delta \beta' \right) & 6a, X & \delta_{\rm CCC} \\ & S_3 &= \Delta R & 1, X & \nu_{\rm CP} \\ & S_4 &= 1/\sqrt{3} \left(\Delta x + \Delta \beta + \Delta \beta' \right) & redund. \\ \end{array}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$		model Y ₂ C-X		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A,	$S_1 = 1/\sqrt{2} \left(\Delta r + \Delta r' \right)$	20a,X	Vcc
$\begin{array}{cccccc} & S_{3}^{-} = \Delta R & & 1, X & \nu_{\rm CP} \\ & S_{4}^{-} = 1/\sqrt{3} (\Delta x + \Delta \beta + \Delta \beta') & \text{redund.} \\ & B_{2} & S_{5}^{-} = 1/\sqrt{2} (\Delta r - \Delta r') & 14 & \nu_{\rm CC,ss} \\ & S_{6}^{-} = 1/\sqrt{2} (\Delta \beta - \Delta \beta') & 18b, X & \delta_{\rm CCP} \\ & & & & & \\ & & & \\ & & & & \\ &$		$S_2 = 1/\sqrt{6} \left(2\Delta \alpha - \Delta \beta - \Delta \beta' \right)$	6a,X	δοσο
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_2 = \Delta R$	1.X	VCP
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_{4} = 1/\sqrt{3} (\Delta \alpha + \Delta \beta + \Delta \beta')$	redund.	Cr
$S_{6} = 1/\sqrt{2} (\Delta\beta - \Delta\beta') $ $model Y_{2}C-PX_{2}$ $A' \qquad S_{1} = 1/\sqrt{2} (\Delta r + \Delta r') $ $S_{2} = 1/\sqrt{6} (2\Delta \alpha - \Delta\beta - \Delta\beta') $ $S_{3} = \Delta R $ $1, X \qquad v_{CC}$ $S_{3} = \Delta R $ $1, X \qquad v_{CP}$ $S_{4} = 1/\sqrt{2} (\Delta r + \Delta r') $ $S_{5} = \Delta \gamma $ $S_{5} = \Delta \gamma $ $S_{6} = 1/\sqrt{2} (\Delta r - \Delta r') $ $S_{6} = 1/\sqrt{2} (\Delta r - \Delta r') $ $S_{7} = 1/\sqrt{2} (\Delta\beta - \Delta\beta') $ $S_{8} = 1/\sqrt{2} (\Delta\beta - \Delta\beta') $ $S_{8} = 1/\sqrt{2} (\Delta\beta - \Delta\beta') $ $S_{9} = 1/\sqrt{3} (\Delta\alpha + \Delta\beta + \Delta\beta') $ $S_{10} = 1/\sqrt{2} (\Delta s - \Delta s') $ $S_{11} = 1/\sqrt{2} (\Delta r - \Delta r') $ $M' \qquad S_{10} = 1/\sqrt{2} (\Delta r - \Delta r') $ $M' \qquad S_{10} = 1/\sqrt{2} (\Delta r - \Delta s') $ $S_{2} = 1/2(\Delta r - \Delta s') $ $M' \qquad S_{1} = 1/\sqrt{2} (\Delta R_{1} + \Delta R_{2}) $ $M' \qquad S_{1} = 1/\sqrt{2} (\Delta R_{1} + \Delta R_{2}) $ $S_{2} = 1/2(\Delta r_{1} + \Delta r'_{1} + \Delta r'_{2} + \Delta r'_{2}) $ $S_{3} = 1/2(\Delta r_{1} - \Delta r'_{1} + \Delta r'_{2} - \Delta r'_{2}) $ $S_{4} = \Delta s $ $S_{5} = 1/2\sqrt{3} (2\Delta \alpha_{1} - \Delta \beta_{1} - \Delta \beta'_{1} + \Delta r'_{2} + \Delta r'_{2}) $ $S_{6} = 1/\sqrt{2} (\Delta \alpha_{1} - \Delta \beta_{1} - \Delta \beta'_{1} + \Delta r'_{2} + \Delta r'_{2}) $ $S_{6} = 1/\sqrt{2} (\Delta \alpha_{1} - \Delta \beta_{1} - \Delta \beta'_{1} + \Delta r'_{2} + \Delta r'_{2}) $ $S_{7} = 1/2\sqrt{3} (2\Delta \alpha_{1} - \Delta \beta_{1} - \Delta \beta'_{1} + \Delta r'_{2} + \Delta r'_{2}) $ $S_{7} = 1/2\sqrt{3} (2\Delta \alpha_{1} - \Delta \beta_{1} - \Delta \beta'_{1} + \Delta r'_{2} + \Delta r'_{2$	Ba	$S_{\epsilon} = 1/\sqrt{2} \left(\Delta r - \Delta r'\right)$	14	VCC as
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-2	$S_c = 1/\sqrt{2} (\Delta \beta - \Delta \beta')$	18b.X	Scon
$A' = \frac{1}{\sqrt{2}} (\Delta r + \Delta r') = 20a, X = \frac{1}{\sqrt{2}} (\Delta r + \Delta r') = 20a, X = \frac{1}{\sqrt{2}} (\Delta \alpha - \Delta \beta - \Delta \beta') = 2aa, X = \frac{1}{\sqrt{2}} (\Delta \alpha - \Delta \beta - \Delta \beta') = 2aa, X = \frac{1}{\sqrt{2}} (\Delta \alpha - \Delta \beta - \Delta \beta') = 2aa, X = \frac{1}{\sqrt{2}} (\Delta \alpha - \Delta \beta - \Delta \beta') = 2aa, X = \frac{1}{\sqrt{2}} (\Delta \alpha + \Delta \alpha') = 2aa, X = \frac{1}{\sqrt{2}} (\Delta \alpha - \Delta \alpha') = \frac{1}{\sqrt{2}} (\Delta \alpha - \Delta \alpha') = \frac{1}{\sqrt{2}} (\Delta \alpha + \Delta \beta + \Delta \beta') = \frac{1}{\sqrt{2}} (\Delta \alpha + \Delta \beta + \Delta \beta') = \frac{1}{\sqrt{2}} (\Delta \alpha - \Delta \alpha') = \frac{1}{\sqrt{2}} (\Delta \alpha - \alpha - \alpha - \alpha') = \frac{1}{\sqrt{2}} (\Delta \alpha - \alpha $			a de la companya de l	CCF
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		model r ₂ C-PX ₂		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	A'	$S_1 = 1/\sqrt{2} \left(\Delta r + \Delta r'\right)$	20a,X	VCC
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_2 = 1/\sqrt{6} (2\Delta \alpha - \Delta \beta - \Delta \beta')$	6a,X	δ _{ccc}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_3 = \Delta R$	1,X	ν _{CP}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_4 = 1/\sqrt{2} (\Delta s + \Delta s')$	2	VPX,s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_5 = \Delta \gamma$	4	δ_{PX_2} , sciss.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_6 = 1/\sqrt{2} \left(\Delta r - \Delta r'\right)$	14	V _{CC'as}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_7 = 1/\sqrt{2} \left(\Delta\beta - \Delta\beta'\right)$	18b,X	$\delta_{\rm CCP}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_8 = 1/\sqrt{2} \left(\Delta\delta + \Delta\delta'\right)$	5	$\delta_{\rm CPX}$, wagg.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$S_9 = 1/\sqrt{3} (\Delta \alpha + \Delta \beta + \Delta \beta')$	redund.	
$S_{11} = 1/\sqrt{2} (\Delta \delta - \Delta \delta') \qquad 6 \qquad \delta_{CPX}, \text{ twist.}$ model $(Y_2C)_2PX$ $A' \qquad S_1 = 1/\sqrt{2} (\Delta R_1 + \Delta R_2) \qquad 1.s, X \qquad v_{CP,s}$ $S_2 = 1/2(\Delta r_1 + \Delta r'_1 + \Delta r_2 + \Delta r'_2) \qquad 20a, s, X \qquad v_{CC,s}$ $S_3 = 1/2(\Delta r_1 - \Delta r'_1 + \Delta r_2 - \Delta r'_2) \qquad 14, s \qquad v_{CC,as}$ $S_4 = \Delta s \qquad 1 \qquad v_{PX}$ $S_5 = 1/2\sqrt{3} (2\Delta \alpha_1 - \Delta \beta_1 - \Delta \beta'_1 + \delta_{AS}) \qquad \delta_{CCC}$	A″	$S_{10} = 1/\sqrt{2} \left(\Delta s - \Delta s'\right)$	3	VPX.as
$ \begin{array}{cccc} model (Y_2C)_2 PX \\ A' & S_1 &= 1/\sqrt{2} \left(\Delta R_1 + \Delta R_2 \right) & 1, s, X & v_{CP,s} \\ S_2 &= 1/2 (\Delta r_1 + \Delta r_1' + \Delta r_2 + \Delta r_2') & 20a, s, X & v_{CC,s} \\ S_3 &= 1/2 (\Delta r_1 - \Delta r_1' + \Delta r_2 - \Delta r_2') & 14, s & v_{CC,es} \\ S_4 &= \Delta s & 1 & v_{PX} \\ S_5 &= 1/2 \sqrt{3} \left(2\Delta \alpha_1 - \Delta \beta_1 - \Delta \beta_1' + \delta \alpha_2 + \Delta \beta_1' + \delta \alpha_2 + $		$S_{11} = 1/\sqrt{2} \left(\Delta\delta - \Delta\delta'\right)$	6	$\delta_{\rm CPX}$, twist.
$\begin{array}{llllllllllllllllllllllllllllllllllll$		model $(Y_2C)_2PX$		
$S_{2} = \frac{1}{2}(\Delta r_{1} + \Delta r'_{1} + \Delta r_{2} + \Delta r'_{2}) = 20a, s, X = v_{CC,s}$ $S_{3} = \frac{1}{2}(\Delta r_{1} - \Delta r'_{1} + \Delta r_{2} - \Delta r'_{2}) = 14, s = v_{CC,as}$ $S_{4} = \Delta s = 1$ $S_{5} = \frac{1}{2}\sqrt{3}(2\Delta \alpha_{1} - \Delta \beta_{1} - \Delta \beta'_{1} + \delta_{as}) = 6a, s, X = \delta_{CCC}$	A'	$S_1 = 1/2 (\Delta R_1 + \Delta R_2)$	1.s.X	VCP
$S_{3} = \frac{1}{2}(\Delta r_{1} - \Delta r_{1}' + \Delta r_{2} - \Delta r_{2}')$ $S_{4} = \Delta s$ $S_{5} = \frac{1}{2}\sqrt{3}(2\Delta \alpha_{1} - \Delta \beta_{1} - \Delta \beta_{1}' + \delta_{1}')$ $I_{4,s} = \nu_{CC,s}$ $V_{CC,s}$ I_{PX} δ_{CCC}		$S_{2} = 1/2(\Delta r_{1} + \Delta r'_{1} + \Delta r_{2} + \Delta r'_{2})$	20a.s.X	VCC .
$S_4 = \Delta s$ $S_5 = 1/2\sqrt{3} (2\Delta\alpha_1 - \Delta\beta_1 - \Delta\beta_1' + \delta_{1,1} - \Delta\beta_1' + \delta_{1,2} - \delta_{1,2$		$S_{2} = 1/2(\Delta r_{1} - \Delta r'_{1} + \Delta r_{2} - \Delta r'_{2})$	14,s	VCC an
$S_5 = 1/2\sqrt{3} (2\Delta\alpha_1 - \Delta\beta_1 - \Delta\beta_1' + 6a,s,X) \qquad \delta_{CCC}$		$S_{4} = \Delta s$	1	Vpv
		$S_5 = 1/2 \sqrt{3} (2\Delta \alpha_1 - \Delta \beta_1 - \Delta \beta_1' + 1)$	6a,s,X	δοσο
$+ 2\Delta \alpha_2 - \Delta \beta_2 - \Delta \beta'_2)$		$+2\Delta \alpha_2 - \Delta \beta_2 - \Delta \beta'_2)$		ccc
$S_{\epsilon} = 1/2(\Delta\beta_1 - \Delta\beta_1' + \Delta\beta_2 - \Delta\beta_2') \qquad 18b,s,X \qquad \delta_{CCP}$		$S_{\epsilon} = 1/2(\Delta\beta_1 - \Delta\beta_1' + \Delta\beta_2 - \Delta\beta_2')$	18b,s,X	δοσ
$S_7 = \Delta \delta$ 4 $\delta_{\rm PC}$, sciss.		$S_7 = \Delta \delta$	4	δ _{PC} , sciss.
$S_{\alpha} = 1/\sqrt{2} (\Delta y + \Delta y')$ 5 δ_{CPY} , wagg.		$S_{\rm e} = 1/\sqrt{2} \left(\Delta y + \Delta y' \right)$	5	SCRY, Wagg.
$S_0 = 1/\sqrt{6} (\Delta \alpha_1 + \Delta \beta_1 + \Delta \beta'_1 + \text{redund.})$		$S_{\alpha} = 1/\sqrt{6} (\Delta \alpha_1 + \Delta \beta_1 + \Delta \beta_1' + \Delta \beta_1')$	redund.	CIA, CC
$+ \Delta \alpha_2 + \Delta \beta_2 + \Delta \beta'_2)$		$+ \Delta \alpha_2 + \Delta \beta_2 + \Delta \beta'_2)$		
$A'' \qquad S_{10} = 1/\sqrt{2} (\Delta R_1 - \Delta R_2)$ 1,as,X ν_{CP} as	A"	$S_{10} = 1/\sqrt{2} \left(\Delta R_1 - \Delta R_2 \right)$	1,as,X	VCP
$S_{11} = 1/2(\Delta r_1 + \Delta r'_1 - \Delta r_2 - \Delta r'_2)$ 20a,as,X v_{CC}		$S_{11} = 1/2(\Delta r_1 + \Delta r'_1 - \Delta r_2 - \Delta r'_2)$	20a,as,X	VCC
$S_{12} = 1/2(\Delta r_1 - \Delta r'_1 - \Delta r_2 + \Delta r'_2)$ 14,as v_{CC}		$S_{12} = 1/2(\Delta r_1 - \Delta r'_1 - \Delta r_2 + \Delta r'_2)$	14,as	VCC as
$S_{13} = 1/2\sqrt{3} (2\Delta\alpha_1 - \Delta\beta_1 - \Delta\beta_1 - \Delta\beta_1 - \delta\beta_1 - \delta\alpha_1 - \delta\alpha$		$S_{13} = 1/2 \sqrt{3} (2\Delta \alpha_1 - \Delta \beta_1 - $	6a,as,X	δοσο
$-2\Delta \alpha_2 + \Delta \beta_2 + \Delta \beta_2)$		$-2\Delta \alpha_2 + \Delta \beta_2 + \Delta \beta'_2)$		
$S_{14} = 1/2(\Delta\beta_1 - \Delta\beta_1' - \Delta\beta_2 + \Delta\beta_2') $ 18b,as,X δ_{CCP}		$S_{14} = 1/2(\Delta\beta_1 - \Delta\beta_1' - \Delta\beta_2 + \Delta\beta_2')$	18b,as,X	δ
$S_{15} = 1/\sqrt{2} (\Delta y - \Delta y') \qquad \qquad$		$S_{15} = 1/\sqrt{2} \left(\Delta y - \Delta y' \right)$	6	δ_{CPY} , twist.
$S_{16} = 1/\sqrt{6} \left(\Delta \alpha_1 + \Delta \beta_1 + \Delta \beta_1' - \text{redund.} \right)$		$S_{16} = 1/\sqrt{6} \left(\Delta \alpha_1 + \Delta \beta_1 + \Delta \beta_1 - \frac{1}{2} \right)$	redund.	CI A.
$-\Delta \alpha_2 - \Delta \beta_2 - \Delta \beta'_2$		$-\Delta \alpha_2 - \Delta \beta_2 - \Delta \beta'_2)$		

^a Notation accepted from literature^{21,22}; indices s, as denote in-phase and out-of-phase vibrations.

Bergrová-Přádná:

TABLE III

Valence force constants ϕ_i	and deviations $\sigma(\phi_i)$ for	Y_2C-X and $(Y_2C)_nPX$	$_{3-n}$ (n = 1, 2; X =
= H,Cl)			

Description	$\phi_i^{\ a}$	$\sigma(\phi_i)^b$	Published values
			Western a Ma
	stretching force	constants	
r(Y-C)	7.40		6.76 ^c
R(C-P)	3.81		3.08 ^d , 2.88 ^e
R(C-C)	3.70		3.73°
s(P-H)	3.01		3.08 ^e
s(P-Cl)	2.10		2·44 ^d
c	leformation forc	e constants	
α(YCY)	1.43		0.86 ^c
B(YCCI)	0.70		0.83 ^c
$\beta^1(\text{YCP}_{})^g$	0.52	0.02	
$\beta^2(YCP_u)$	0.30	0.02	
$\beta^1(\text{YCP}_{\text{cl}})$	0.50	0.09	
$\beta^2(YCP_{cl})$	0.46	0.01	
v(HPH)	0.53		0.68°
v(CIPCI)	2.75?		1.02 ^d
$\delta^1(CPH)$	0.71	0.01	0.81 ^e
δ^2 (CPH)	0.54	0.03	
$\delta^1(CPCI)$	0.55	0.05	1.224
δ^2 (CPCl)	0.96	0.02	
y(CPC)	0.82		0·97 ⁵
	interaction forc	e constants	
rr(YC.YC)	1.05		0.83 ^c
rR(YC,CX)	0.45		0.41 ^c
Rs(CP,PH)	0.04		0 ^e
Rs(CP,PCl)	0.38		0-38 ^d
RR(CP,CP)	-0.008		-0.03^{f}
ss(PH,PH)	-0.008		-0.002 ^e
ss(PCl,PCl)	0.08		0.38^d
rx(YC,YCY)	0.87		0.29^{c}
rB(YC,YCCl)	0.18		0.20^{c}
$r\beta(YC, YCP_{\mu})$	0.19		David and the state of the stat
$r\beta(YC, YCP_{C1})$	0.15	0.01	
$R\beta(CCI, YCCI)$	0.40		0.65°
RB(CP, YCP _H)	0.32	0.05	
PRICE VCP	0.54	0.01	

Collection Czechoslovak Chem. Commun. [Vol. 46] [1981]

Vibrational Sp	pectra of Phenylphospi	hine			2295
TABLE III (Continued)		and a		- Sundaria	
	Description	$\phi_i^{\ a}$	$\sigma(\phi_i)^b$	Published values	
	sy(PH, HPH)	-0.01		0 ^e	
	$s\gamma(PCI,CIPCI)$	0.17		0.174	
	γδ(HPH,CPH)	0.018	0.004	0 ^e	

^a Stretching force constants in N cm⁻¹, deformation constants in 10^{-18} J rad⁻², constants of interaction between the stretching and deformation motions in 10^{-8} N rad⁻¹; ^b when no value is listed, the constant was obtained by direct calculation; ^c ref.⁷, ^d ref.⁹, ^e ref.⁸, ^f ref.¹³, ^g the indices 1 and 2 denote the mono- and diphenyl derivative, symbols H and Cl the type of substitution.

sible to assign without ambiguity only the twisting vibration of the diphenylchlorophosphine, since it belongs to the symmetry block without strong coupling. Concerning the assignment of other vibrations, we favor the results obtained directly by spectral analysis¹, as presented in Table V. The calculation should involve also the remaining X-sensitive vibrations $v_{16b}(B_1) - x$ and especially $v_{17b}(B_1) - y$. We assign the latter vibration to a depolarized Raman line in the 425 cm⁻¹ region, the $v_{6a}(A_1) -$ - t vibration to a polarized line at 455 cm⁻¹ – which is overlapped in the dichloroderivative spectrum by the antisymmetric stretching vibration $v_{as,PCl}$; this overlap explains the rather high value of the depolarization factor of this line (0.53). The torsional vibration τ_{CCPX} (X = H,Cl) was observed only in the spectrum of phenyldichlorophosphine at 99 cm⁻¹; in the same region a torsional vibration band appeared in the spectrum of a structurally similar Cl₂P-PCl₂ molecule²⁵. A splitting of the phenyl group X-sensitive vibrations into the in-phase and out-of-phase component was determined by calculation for the diphenyl derivatives¹. The splitting does not exceed 30 cm⁻¹, in agreement with conclusions of Hassler and Höfler².

The structural model used for the normal coordinate calculation is too oversimplified to be used for a detailed discussion of differences between the calculated and published⁷⁻⁹ force constants values. To a certain extent, the transferability of force constants can be assessed: For example, the stretching force constants connected with the vibrations of significant characteristicity are transferable within this series, with equivalent substituents. The force constants of the v(C-P) vibration suggests (in comparison with the C-P force constant from methylphosphine⁸) an existence of conjugation between the P atom and phenyl group. The transferabil-

Bergrová-Přádná:

TABLE IV

Number	σ , cm ⁻¹	<i>Q</i> σ, %	PED"
		model	Y₂C-Cl
			2
1	1 100	-1.33	$69(v_{CC,s}), 27(v_{CP})$
2	408	1.98	$68(\delta_{CCC}), 32(v_{CC})$
3	679	3.06	$41(v_{cp}), 31(v_{cc}), 28(\delta_{ccc})$
5	1 328	0.23	97(Vcc -)
6	303	-2.57	$97(\delta_{\rm CCP})$
		model V	. С ₋ рн.
		moder	20 1112
1	1 120	-1.12	$51(v_{CC,s}), 28(v_{CP}), 11(\delta_{PH_2})$
2	401	-2.30	$72(\delta_{CCC}), 28(\nu_{CP})$
3	692	0.44	$40(v_{CP}), 33(v_{CC}), 22(\delta_{CCC})$
4	2 284	0.22	100(v _{nu})
5	1 074	-0.09	$55(\delta_{\rm PH}), 25(\delta_{\rm CPH}), 15(v_{\rm CC})$
6	1 321	0.53	96(Vcc)
7	248	0.40	99(dece)
8	604	0.17	$63(\delta_{\text{corr}}) 30(\delta_{\text{corr}})$
10	2 292	0.09	$100(v_{prr})$
11	823	-0.24	$100(\delta_{CPH,as})$
		model (Y	(2C)2PH
1	678	1.45	$42(v_{CP,s}), 31(v_{CC,s}), 25(\delta_{CCC})$
2	1 102	-0.09	$69(v_{CC,s}), 29(v_{CP,s})$
3	1 303	1.73	$100(v_{CC,as})$
4	2 288	0.13	$100(v_{\rm PH,s})$
5	405	-3.31	$58(\delta_{CCC}), 20(\delta_{PC_2}), 18(v_{CP_2})$
6	202	-0.50	$92(\delta_{CCP}), 4(_{CPH e})$
7	258	-0.78	$69(\delta_{PC_2}), 12(\delta_{CCC}), 11(\nu_{CP_2})$
8	495	1.98	$90(\delta_{CPH}), 5(\delta_{PC})$
10	693	-0.73	$42(\nu_{CP,as}), 33(\nu_{CC,s}), 19(\delta_{CCC})$
11	1 1 1 6	-0.72	$63(\nu_{CC,s}), 34(\nu_{CP,ss})$
12	1 316	0.75	$100(v_{CC})$ as
13	411	- 5.93	$78(\delta_{CCC}), 22(\nu_{CP})$
14	170	1.73	$100(\delta_{CCP})$
			· CCI ·

Vibrational Spe	ectra of Phenyl	phosphine		2297
TABLE IV (Continued)				
Number	σ , cm ⁻¹	Q5, %	PED^a	
	¢			
		model	Y ₂ C-PCl ₂	
1	1 089	-0.09	$77(v_{CC}), 24(v_{CP})$	
3	695	0.29	$54(v_{CP}), 21(v_{CC}), 11(\delta_{CCC})$	
4	504	-1.00	$42(\nu_{PCL_s}), 40(\delta_{CCC}), 13(\delta_{PCL_s})$	
6	1 325	0.30	$98(v_{CC,as})$	
10	461	-2.22	$94(v_{\text{PC1,as}})$	
		model	(Y ₂ C) ₂ PCl	
1	671	2.89	$53(\nu_{CP}), 23(\delta_{CCC}), 19(\nu_{CC})$	
2	1 075	1.64	$80(v_{CC,s}), 22(v_{CP,s})$	
3	1 325	0.23	$98(v_{C,as})$	
4	509	-1.80	$48(\nu_{PC1}), 32(\delta_{CCC}), 11(\delta_{PC_2})$	
10	699	-1.16	$58(v_{CP,as}), 28(v_{CC,s}), 10(\delta_{CCC})$	
11	1 093	0.27	$74(v_{CC,s}), 28(v_{CP,s})$	
12	1 325	0.23	$99(v_{CC,as})$	
13	467	-2.41	$84(\delta_{CCC}), 13(\delta_{CPC1,as})$	
14	195	-3.00	$71(\delta_{\text{CCP}}), 25(\delta_{\text{CPC1,as}})$	
15	234	-2.18	$57(\delta_{\text{CPCLas}}), 29(\nu_{\text{CP,as}})$	

^a The in-phase and out-of-phase vibrations are not distinguished with diphenyl derivatives, the notation corresponds to Table II.

ity of the force constants connected with deformation motions is also determined by the geometry of the phosphine-group pyramide, in addition to the character of the substituent.

The potential energy distribution shows increased coupling between the phenyland phosphine group vibrations (when passing from phenylphosphine to diphenylphosphine and their corresponding chloro derivatives). The estimation of the HPH valence angle by Linnett²⁶, based on this fact, led to 93°10' for phenylphosphine, in good agreement with the experimental value¹⁸. With chloroderivatives, the $v_{s,PC1}$ vibration seems to be coupled not only with deformation vibrations of the chlorophosphine group, but also with the $v_{6a}(A_1)$ vibration. The remaining totally symmetric X-sensitive vibrations of the phenyl group v_{20a} and $v_1(A_1)$ (so called qand r vibrations) are mutually coupled in all the compounds studied; the assumption of their entire characteristicity² was not verified.

7	7	n	O
L	4	7	0

$\sigma, \mathrm{cm}^{-1} \varrho_{\sigma}$	Assignment	Description	Bases for assignment
	m	odel Y ₂ C-PCl ₂	
188 (0.83)	6 (A")	δ_{CPCI} , twist.	$v_4(E) - PCl_3^a$
243 (0.80)	$18b(B_2)$	δ_{CCP}, X	$18b(B_2)$
257 (0.21)	4 (A')	δ _{PC1 PC1} , sciss.	$v_2(A_1) - \mathrm{PCl}_3^a$
291 (0.08)	5 (A')	δ_{CPCI} , wagg.	$v_5(A') - \mathrm{CH_3PCl_2}^c$
451 (0.53)	$6a(A_1) +$	$\delta_{\rm CCC}, X$	depol. factor
	3 (A")	VPC1,as	$v_3(E) - \mathrm{PCl}_3^{a}$
	m	odel $(Y_2C)_2PCl$	
201 (-)	18b (B ₂)	$\delta_{\rm CCP}, {\rm X}$	$18b(B_2)^b$
229 (0.86)	6 (A")	$\delta_{\rm CPC1}$, twist.	$v_6(A'')^{b}$
261 (0.12)	4 (A')	$\delta_{\rm CPC}$, sciss.	$v_2(A_1) - P(CH_3)_3^c$
283 (0.16)	5 (A')	δ_{CPCI} , wagg.	$v_5(A'') - (CH_3)_2 PCI$
456 (0.20)	$6a(A_1)$	$\delta_{\rm CCC}, X$	depol. factor

TABLE V

The assignment of deformation vibrations for $(Y_2C)_n PCl_{3-n}$ (n = 1, 2)

* Ref.¹, ^b ref.⁴, ^c ref.²⁴.

TABLE VI

Vibrational assignment and corresponding calculated wave numbers in dimethylphenylphosphine

$\sigma_{\rm exp},{\rm cm}^{-1}$			-1		
R	IR	Assignment	$\sigma_{\rm calc}, {\rm cm}^{-1}$	Qo, %	Assignment
125 m			137	-9.6	$16b(B_1), X?$
253 s	260 m,br	$18b(B_2)^b$	267	-3.9	4 (A') , sciss.
282 s		Spc ^a	291	-3.2	5 (A') , wagg.?
325 s	330 vs	SPC b	295	9.2	6 (A'') , twist.
396 m	400 s		412	-3.4	$6a(A_1), X$
	434 m	VPC ^a			16a (A2), FCCC
481 vs	485 vs	YPC ^a			$17b(B_1), X$
653 s	653 m	VPC	622	4.7	2 $(A'), v_{PC}$
693 sh	685 vs				4 $(B_1), \Gamma_{CCC}$
707 m	707 sh	comb. ^a	715	-1.1	3 (A"), VPC as
760 vs	760 m	comb."	747	1.7	$1 (A_1), X$
890 s	890 vs	comb. ^a			$10b(B_1), \gamma_{CH}$
1 103 s	1 103 s	V _{CP} ^a	1 110	-0.63	20a $(A_1), X$
	1 315s		1 317	-0.15	14 $(B_2), v_{\rm CC}$

Vibrational Spectra of Phenylphosphine

The results of this paper outline the applicability of the overlay valence force field calculation for the phenylphosphine derivatives. In addition, the calculations were extended to P-methyl derivatives of phenylphosphine; in these calculations the methyl group was approximated by a mass center with 16.04 relative atom mass units²⁷. The normal coordinate calculations allow a more accurate assignment of vibrations^{28,29} in the case of dimethylphenylphosphine $C_6H_5P(CH_3)_2$. The wave-numbers calculated by means of this procedure are presented along with experimental values and the suggested assignments in Table VI.

The author wishes to express her gratitude to Dr J. Strauch, Department of Inorganic Chemistry, Charles University, and to Dr M. Čapka and Dr M. Jakoubková, Institute of Chemical Process Fundamentals, Czechoslovak Academy of Sciences, for their help in the vibration spectra measurements and to Dr M. Horák, Dr V. Špirko and Dr Š. Urban, Laboratory of Molecular Spectroscopy, J. Heyrovský Institute of Physical Chemistry and Electrochemistry, Czechoslovak Academy of Sciences, for their assistance in the spectral analysis and corresponding calculations.

REFERENCES

- 1. Bergrová S.: Dissertation. Charles University, Prague 1979.
- 2. Hassler K., Höfler F.: Monatsh. Chem. 110, 919 (1979).
- 3. Naumov V. A., Zaripov N. M., Gulyanova N. A.: Zh. Strukt. Khim. 13, 917 (1972).
- 4. Schindlbauer H., Stenzenberger H.: Spectrochim. Acta 26A, 1707 (1970).
- 5. Amster R. L., Colthup N. B.: Spectrochim. Acta 19, 1849 (1963).
- 6. Steger E., Stopperka K.: Chem. Ber. 94, 3023 (1961).
- 7. Scherer J. R.: Spectrochim. Acta 20A, 345 (1964).
- 8. Lannon J. A., Nixon E. R.: Spectrochim. Acta 23A, 2713 (1967).
- 9. Fishman A. I., Remisov A. B., Kuramshin I. Y., Pominov I. I.: Spectrochim. Acta 32A, 651 (1976).
- 10. Schachtschneider J. H., Snyder R. G.: Spectrochim. Acta 19, 117 (1963).
- 11. Horák M., Papoušek D.: The Infrared Spectra and Structure of Molecules, p. 445. Academia, Prague 1976.
- 12. Becher J. H., Höfler F.: Spectrochim. Acta 25A, 1703 (1969).
- 13. Beagley B., Medwid A. R.: J. Mol. Struct. 38, 229 (1977).
- 14. Rao K. N., Mathews C. W.: Molecular Spectroscopy, Modern Research, p. 376. Academic Press, New York 1972.
- 15. Langseth A., Stoicheff B. P.: Can. J. Phys. 34, 350 (1956).
- 16. Erlandsson G.: Ark. Fys. 8, 341 (1954).
- 17. Bartell L. S.: J. Chem. Phys. 32, 832 (1960).
- 18. Kojima T., Breig E. L., Lin C. C.: J. Chem. Phys. 35, 2139 (1961).
- 19. Brock C. P., Ibers J. A.: Acta Crystallogr. B29, 2426 (1973).
- 20. Nelson R.: J. Chem. Phys. 39, 2382 (1963).
- 21. Wilson E. B.: Phys. Rev. 45, 705 (1934).

^a ref.²⁸; ^b ref.²⁹; ^c presented is the assignment obtained by the analysis of experimental data and by calculation, vibrations denoted ? were not verified by the calculation, other vibrations were assigned on basis of comparison with the model compounds (chlorobenzene, substituted methylphosphine).

- Nakamoto K.: Infrakrasnye Spektry Neorganicheskikh i Koordinacionnykh Soedinenii, p. 213. Mir, Moscow 1966.
- 23. Bist H. D., Sarin V. N., Ojha A., Jain Y. S.: Spectrochim. Acta 26A, 841 (1970).
- 24. Goubeau J., Baumgärtner R., Koch W., Müller U.: Z. Anorg. Allg. Chem. 337, 174 (1965).
- 25. Frankiss S. G., Miller F. A.: Spectrochim. Acta 21, 1235 (1965).
- 26. Linnett J. W.: Trans. Faraday Soc. 41, 223 (1945).
- 27. Sheline R. K., Pitzer K. S.: J. Chem. Phys. 18, 595 (1950).
- 28. Goubeau J., Langhardt D.: Z. Anorg. Allg. Chem. 338, 163 (1965).
- 29. Allen E. A., Wilkinson W.: Spectrochim. Acta 30A, 1219 (1974).

Translated by Z. Dolejšek.